» »

Электронный проходной выключатель. Выключатель питания с нулевым потреблением мощности на основе нефиксируемой кнопки Параметры и элементы схемы

18.08.2023

— это электронное устройство собранное на мощных полевых транзисторах MOSFET, которые являются одним из самых важных коммутирующих элементов в современной бытовой и профессиональной электронной технике. Используется такие переключатели в основном в тех устройствах,где присутствуют большие нагрузки по постоянному току и способны заменить собой сильно-точный коммутационный аппарат с возможностью гашения электрической дуги,так как у таких устройств из за больших токов часто выгорают контактные площадки и они приходят в негодность. Электронный переключатель с использованием MOSFET-транзисторов таким явлениям не подвержен и отлично справляется с работой коммутации нагрузок при больших токах и напряжениях в различных силовых цепях.

Представленная здесь схема имеет возможность с легкостью управлять переключением больших нагрузок по постоянному току, используя при этом низкие значения импульсного напряжения — всего 5 В. Установленные в схеме MOSFET -транзисторы NTP6411 рассчитаны на работу с напряжением в 100V и током 75А,мощность этих электронных компонентов составляет около 200W.Такие параметры силовых транзисторов позволяет эффективно применять этот электронный переключатель в узлах автомобиля вместо штатного реле. Для активации транзисторов устройства используется как обычный выключатель так и импульсный вход,выбор метода ввода осуществляется установкой перемычки из отрезка изолированного провода на соответствующие выводы коннектора.

На практике наиболее эффективен и полезен вход с импульсным напряжением,так как он имеет низкие значения управляющего напряжения. Проектировалась схема для работы с постоянным напряжением 24V, но вполне успешно может быть использована и при других напряжения,при тестировании на 12 вольтах показала себя в работе с лучшей стороны,к тому же установленные MOSFET-NTP6411 могут быть заменены на другие N-канальные полевые транзисторы соответствующих электрических характеристик. Установленный в схеме диод D1 выполняет защитные функции,тем самым предотвращает броски напряжения исходящих от индуктивных нагрузок. Встроенные в плату светодиоды дают возможность визуального наблюдения за состоянием полевых транзисторов,а винтовые терминалы обеспечивают подключение электронного переключателя в разные модули. По завершению сборки MOSFET переключателя он прошел суточный тест обеспечивая работой электромагнитный клапан с напряжением питания 24 вольта и током пол-ампера,при этом полевые транзисторы находились в совершенно холодном состоянии,даже в отсутствии тепло-отводов.В общем схема зарекомендовала себя надежным устройством,способная работать в самых разных областях применения,в том числе и автомобильной электронике вместо реле или работать как управляющие устройство в светодиодном освещении.

Схема электронного выключателя основана на микросхеме CD4013 , и имеет два устойчивых состояния, ON и OFF. Когда он включен, то и остается включенным, пока вы не нажмёте кнопку выключателя еще раз. Короткое нажатие кнопки SW1, переключает его в другое состояние. Устройство будет полезно для исключения громоздких и ненадёжных клавишных переключателей либо для дистанционного управления разными электроприборами.

Электронное реле - схема принципиальная

Контакты реле могут выдерживать высокое сетевое напряжения переменного тока, а также достаточный постоянный ток, что делает проект подходящим для таких приборов, как вентилятор, свет, телевизор, насос, электродвигатель постоянного тока, да и вообще любой электронный проект требует подобный электронный переключатель. Устройство работает от сети переменного тока напряжением до 250 В и коммутирует нагрузку до 5 A.


Параметры и элементы схемы

  • Питание: 12 вольт
  • D1: индикатор подачи питания
  • D3: индикатор включения реле
  • CN1: вход питания
  • SW1: выключатель

Транзистор Q1 можно заменить на любой похожей структуры с предельным током минимум 100 мА, например КТ815 . Реле можно взять автомобильное, или любое другое на 12 В. Если электронный выключатель требуется собрать в виде отдельной малогабаритной коробочки, имеет смысл питание схемы осуществить от маленького импульсного блока питания, типа зарядки мобильного. Поднять напряжение с 5 до 12 В можно заменой стабилитрона на плате. При необходимости вместо реле ставим мощный полевой транзистор, как это реализовано в

Мощные электронные MOSFET переключатели являются одним из основных узлов в бытовой и специальной электронике и могут быть полезны для осуществление контроля больших нагрузок постоянного тока, без использования сильноточных выключателей, у которых со временем подгорают и изнашиваются контакты. Как известно, полевые MOSFET транзисторы способны работать с очень большими напряжениями и токами. Что сильно востребованно для соединения нагрузок в различной силовой цепи.

Схема электронного переключателя

Эта схема позволяет легко переключать низкими импульсами напряжения (5 В) для управления большой нагрузкой постоянного тока. Мощность указанного по схеме MOSFET транзистора подходит для того, чтоб выдерживать напряжения и токи до 100 В, 75 А (для NTP6411). Этот электронный переключатель может использоваться вместо реле в модулях вашего автомобиля.

Обычный выключатель или импульсный вход может быть использован для активации транзистора. Выбрать метод ввода можно установив перемычку на соответствующей стороне. Импульсный вход, вероятно, будет наиболее полезен. Схема была спроектирована для использования с 24 В, но она может быть адаптирована для работы с другими напряжениями (испытания прошли нормально и при 12V). Переключатель должен также работать с другими N-канальными МОП-транзисторами. Защитный диод D1 включен для предотвращения скачков напряжения от индуктивных нагрузок. Светодиоды обеспечивают визуальную индикацию состояния транзистора. Винтовые клеммы позволяют подключать устройство в разные модули.

Выключатель после сборки был протестирован в течении суток совместно с электромагнитным клапаном (24 В / 0,5 А) и транзистор был прохладным на ощупь даже без радиатора. В общем эту схему можно рекомендовать для самых широких областей применения - как светодиодным освещением, так и в автоэлектронике, на замену обычным электромагнитным реле.

В публикации были представлены схема и описание электронного переключателя с зависимой фиксацией, в котором использованы восемь кнопок с замыкающими контактами, не фиксируемых в нажатом положении. Переключатель собран на трех микросхемах, причем ПЗУ в нем выполняет функцию приоритетного шифратора. В показано, что ПЗУ позволяет проектировать не только комбинационные устройства (т. е. такие, у которых всем комбинациям входных состояний однозначно соответствуют определенные комбинации выходных), но и асинхронные потенциальные автоматы, у которых благодаря обратным связям и, как следствие, появлению свойства памяти такого однозначного соответствия нет. В качестве простейшего примера такого автомата подойдет известный RS-триггер.

Используя ПЗУ с цепями обратной связи, можно упростить переключатель, описанный в , исключив из него запоминающий регистр и возложив его функцию на ПЗУ. Возможно также исключить и дешифратор. Если для какого-либо разрабатываемого прибора требуется подобный переключатель с числом кнопок не более пяти, его удобно выполнить на ППЗУ К155РЕЗ.

Схема варианта переключателя, собранного на этой микросхеме, показана на рис. 1. Узел формирует два выходных кода. Один из них (код - "1 из 5", активный уровень - низкий) выводят через пять параллельных линий - информационных выходов ПЗУ DS1, - объединенных с пятью адресными входами ПЗУ. Этот код пригоден, в частности, для выбора режима работы того прибора, в который будет встроен переключатель.

Следует отметить, кстати, что включение светодиодов через общий резистор (как в ) может снижать напряжение логической единицы на выходах дешифратора ниже 2,4 В. Поэтому здесь предусмотрены дополнительные резисторы, надежно обеспечивающие нормальное единичное напряжение.

Второй код, если он нужен, выводят через три остальных разряда ПЗУ. Этот код (любого вида, например двоичный) может быть использован для управления коммутацией цифровых или аналоговых сигналов.

Работает переключатель следующим образом. В пять ячеек ПЗУ в соответствии с табл. 1 информацию записывают таким образом, что пять его выходных линий "поддерживают" пять входных линий, т. е. на тот вход, который соответствует нажатой кнопке, с выхода поступает низкий уровень, на остальные четыре - высокий. Таким образом, переключатель находится в устойчивом состоянии и остается в нем после отпускания кнопки.

По остальным 27 адресам ПЗУ записаны единицы во все информационные разряды (числа FF). Поэтому при нажатии на другую кнопку сначала на адресных входах присутствует низкий уровень и от первой нажатой кнопки, и от второй. По любому адресу ПЗУ, содержащему такой "двойной" низкий уровень, записано число FF, которое заменяет нуль на единицу на том входе, который "помнил" низкий уровень от нажатия на первую кнопку. В результате на входе появится адрес с одним нулем - от второй нажатой кнопки, который сразу же будет "поддержан" соответствующей информацией с выхода ПЗУ, и переключатель перейдет в другое устойчивое состояние.

Таким образом, речь идет об устройстве с шестью устойчивыми состояниями. Пять из них соответствуют одной из пяти нажатых кнопок каждое, а шестое - пяти единицам на всех входах ПЗУ. Для практики это положение - холостое, поскольку не может быть установлено нажатием на кнопки. Благодаря "поддержке" переключатель не боится "дребезга" контактов.

Используя дополнительные элементы, нетрудно сделать переключатель на шесть состояний с шестью кнопками. Для этого требуется формировать высокий уровень на входе CS ПЗУ при нажатии на шестую кнопку. Таким формирователем может служить инвертор DD1.1 (рис. 2). Диод VD1 необходим для правильного формирования выходных кодов и свечения шестого светодиода во время нажатия на кнопку SB6.

Восьми выходов ПЗУ уже недостаточно для формирования кодов "1 из 6" и двоичного, поэтому, если нужны они оба, получают недостающий девятый выход, используя элемент И-НЕ DD2.1. Порядок программирования ПЗУ для этого варианта переключателя представлен в табл. 2.

Если необходимо, чтобы переключатель при каждом включении питания всегда устанавливался в определенное состояние (можно выбрать любое одно из 5 или 6). параллельно кнопке с соответствующим номером припаивают оксидный конденсатор емкостью 10...47 мкФ, который, заряжаясь, имитирует нажатие на эту кнопку в течение короткого времени сразу после подачи питания.

Допустимо использование не только одной группы из пяти (шести) кнопок, но и двух групп или более, если поставлена задача сделать несколько пультов управления переключателем. При этом все кнопки дополнительных групп соединяют параллельно соответствующим кнопкам основной группы. Никакого приоритета при этом не возникает. Переключатель перейдет в стабильное состояние, соответствующее той кнопке из любой группы, которая будет отпущена последней.

Выбор порядка подключения выходных линий - произвольный, но для каждого варианта будет новая таблица программирования ПЗУ. В описанном варианте выбран такой порядок подключения, чтобы облегчить трассировку проводников на печатной плате - еще одно преимущество ПЗУ перед жесткой логикой. Попарно соединены те выводы микросхемы, которые в корпусе находятся один напротив другого. Для записывания информации в ПЗУ можно воспользоваться любым подходящим программатором, например, описанным в .

Напряжение питающей сети не всегда соответствует требованиям потребителей. Если происходит его скачок с 220 В до 250 В, это может вывести из строя чувствительные электроприборы. В качестве защиты здесь можно применять переключатель фаз.

Разнообразие типов переключателей фаз

Принцип действия

Переключатель обеспечивает выбор фазы, напряжение на которой соответствует установленным параметрам. Сам он подключается к трехфазной сети, а на выходе одна из фаз подключается к нагрузкам. Если напряжение на ней выходит за заданный диапазон, переключатель переводит потребителей на работу от другой фазы.

Ручные переключатели фаз

Цели применения устройств следующие:

  • переключение питающей сети;
  • запуск и остановка электродвигателей, включение трансформаторов и других приборов.

Главная цель механического переключателя – создание бесперебойного питания однофазной нагрузки и защита потребителей от скачков напряжений в сети.

На рисунке ниже изображена схема перекидного переключателя на 3 положения. К контактам (2), (4), (6) подключены 3 фазы, а к неподвижному контакту – нагрузка.

Схематичный вид 3х положений перекидного переключателя

Ручные кулачковые переключатели служат для коммутации цепей под напряжением до 380 В. Их используют при включении и выключении электроприборов, а также для создания главных и управляющих цепей. Устройства имеют небольшие габариты, выдерживают кратковременные перегрузки и обладают высокой коммутационной способностью. Когда производится выбор прибора, важно обращать внимание на номинальный ток.

Во многих конструкциях ручных переключателей предусмотрено нулевое положение, в котором электрические цепи остаются разомкнутыми. Это позволяет использовать их в качестве выключателей.

Электронные переключатели фаз

Для защиты однофазных потребителей от скачков напряжения в сети лучше подходит электронный прибор. Он автоматически переходит на другую линию, когда действующая линия не может нормально работать. Оборудование служит для питания бытовой и промышленной нагрузки.

Автоматический прибор большинства типов имеет следующие параметры установки:

  1. Минимальный и максимальный пределы напряжения. Особенно важен верхний предел, который следует правильно выставлять. Если его сделать слишком низким, начнутся частые срабатывания. При высоких значениях начнет перегреваться внутренняя проводка. Выбирается приоритетная фаза (L1) устройства переключения. Если на ней нет скачков напряжения, переход на линии (L2) или (L3) может не произойти. Если такое переключение будет иметь место, прибор продолжит слежение за приоритетной линией и при восстановлении необходимого уровня напряжения произойдет обратное переключение нагрузки. Если нижний и верхний пределы напряжения пересекаются в диапазоне отклонений на 10-20 В, прибор будет нестабильно работать. Поэтому важно сделать правильный выбор установок.
  2. Время возврата – интервал, в течение которого переключатель должен автоматически проверять состояние прежнего источника питания, чтобы вернуться в исходное состояние. Если оно в норме, происходит обратный переход. В противном случае следующая проверка произойдет через тот же промежуток времени. Выбор времени возврата делает пользователь, исходя из опыта, потребностей и особенностей работы электросети.
  3. Время включения – пауза, после которой прибор делает попытку включить питание нагрузки после того, как напряжение пропало на всех фазах.

Производители

Переключатели «АПАТОР» серии 4G

Российская компания “АПАТОР” производит изделия массового применения и выполненные по специальному заказу. Широкий ассортимент продукции позволяет подобрать подходящую замену изделиям других производителей.

Схемы коммутации предусматривают следующие варианты:

  • наличие или отсутствие нулевого положения переключателя;
  • ускоренная коммутация;
  • многопозиционные переключения при количестве полюсов от 1 до 8;
  • групповые переключения.

Положение кулачкового переключателя, как изображено на рисунке ниже, обеспечивает замыкание электрической цепи верхними подвижными контактами (3) и неподвижными (1). Проводники зажимаются винтами (12).

Схема строения переключателя компании “АПАТОР” на основе кулачкового механизма

При повороте кулачка (2) на 90 0 против часовой стрелки верхний шток (5) поднимается вверх под действием пружин и размыкает цепь. Нижний шток поднимается вверх вместе с подвижными контактами, замыкая нижнюю электрическую цепь.

Кулачковый механизм имеет следующие достоинства:

  • надежную коммутацию;
  • устойчивость к перегрузкам;
  • малое сопротивление замкнутых контактов;
  • высокую скорость замыкания и размыкания контактов;
  • небольшие усилия переключения;
  • возможность создания многочисленных схем переключений одним и тем же механизмом;
  • длительный срок эксплуатации.

Устройство переключателей позволяет легко производить коммутацию электрических цепей без лишнего давления на ручку. Ее искусственное торможение также делать нецелесообразно.

Фирма «АПАТОР» изготавливает специальные переключатели, рассчитанные на номинальный ток 100 А. Высокая нагрузка обеспечивается за счет дублирования контактов. Устройства можно применять в качестве основных выключателей.

Переключатели «SOCOMEC SCP»

Производитель «SOCOMEC SCP» (основан во Франции) выпускает несколько типов аппаратов. Наиболее популярными являются многополюсные переключатели COMO C (преимущественно трех,- и четырехполюсные). Устройствами можно безопасно переключать и выключать нагрузки от 25 А до 100 А (рис. а). Разрыв контакта – видимый.

Различные типы переключателей фаз от компании «SOCOMEC SCP»

Sirco VM commut – многополюсный ручной переключатель (рис. б) обеспечивает питание нагрузки от двух источников. Номинальный ток составляет 65-125 А. При отключении остается видимый разрыв.

SIRCOVER M (рис. в) является перекидным рубильником с ручным управлением и несколькими полюсами. Устройство обеспечивает отключение или включение источников питания на нагрузку.

Переключатель фаз SPH-41

Устройство обеспечивает подключение однофазного потребителя к трехфазной четырехпроводной сети (производитель ООО “Вектор”, Россия). Автоматический прибор устанавливается после счетчика, выбирает самую надежную по параметрам фазу и подключает к ней потребителя. Затем производится контроль за напряжением. Выбор и установка его верхнего и нижнего допустимых пределов делается заранее.

Переключение фаз в автоматическом режиме

Переключатель ПЭФ-301 изображен на рисунке ниже (производитель ООО НПК “Электроэнергетика”). Прибор предназначен для питания однофазной бытовой и промышленной нагрузки от трехфазной сети. Устройство автоматически выбирает фазу с лучшими параметрами и подключает к ней нагрузку. Потребители до 3,5 кВт связаны с сетью через прибор (рис. а). Приоритетной является фаза L1. При выходе значения напряжения за порог срабатывания, ПЭФ-301 переключает потребителя на другую фазу с помощью контактов (7-8), (9-10), (11-12) на выходе прибора.

При большей мощности нагрузки выходные контакты прибора связаны с катушками магнитных пускателей, которые управляют силовыми контактами подачи напряжения через фазу с лучшими характеристиками (красный, зеленый и черный на рис. б).

Схемы подключения автоматического переключателя фаз

3х фазный переключатель. Видео

Обзор трехфазного переключателя для дома доступен в видео ниже.

Переключатель фаз в доме или квартире можно ставить ручной или автоматический. Электронный переключатель фаз обеспечивает максимальный комфорт, поскольку выполняет всю работу без вмешательства и не требует постоянного контроля. Следует только произвести правильную настройку его работы, и он надежно защитит бытовые электроприборы.